Fast Continuous Haar and Fourier Transforms of Rectilinear Polygons from VLSI Layouts
نویسندگان
چکیده
We develop the pruned continuous Haar transform and the fast continuous Fourier series, two fast and efficient algorithms for rectilinear polygons. Rectilinear polygons are used in VLSI processes to describe design and mask layouts of integrated circuits. The Fourier representation is at the heart of many of these processes and the Haar transform is expected to play a major role in techniques envisioned to speed up VLSI design. To ensure correct printing of the constantly shrinking transistors and simultaneously handle their increasingly large number, ever more computationally intensive techniques are needed. Therefore, efficient algorithms for the Haar and Fourier transforms are vital. We derive the complexity of both algorithms and compare it to that of discrete transforms traditionally used in VLSI. We find a significant reduction in complexity when the number of vertices of the polygons is small, as is the case in VLSI layouts. This analysis is completed by an implementation and a benchmark of the continuous algorithms and their discrete counterpart. We show that on tested VLSI layouts the pruned continuous Haar transform is 5 to 25 times faster, while the fast continuous Fourier series is 1.5 to 3 times faster.
منابع مشابه
Fast continuous Fourier and Haar transforms of rectilinear polygons from very-large-scale integration layouts
We propose two new fast algorithms for the computation of the continuous Fourier series and the continuous Haar transform of rectilinear polygons such as those of mask layouts in optical lithography. These algorithms outperform their discrete counterparts traditionally used. Not only are continuous transforms closer to the underlying continuous physical reality, but they also avoid the inherent...
متن کاملLCAV Master Thesis Algorithms for the Computation of Continuous Transforms of Rectilinear Polygons from IC Layouts
In this work, we present a novel way of computing the continuous Haar, Fourier and cosine series coefficients of rectilinear polygons. We derive algorithms to compute the inner products with the continuous basis functions directly from the vertices of the polygons. We show that the overall computational complexity of those algorithms is lower than that of the traditional corresponding discrete ...
متن کاملPruned Continuous Haar Transform of 2D Polygonal Patterns with Application to VLSI Layouts
We introduce an algorithm for the efficient computation of the continuous Haar transform of 2D patterns that can be described by polygons. These patterns are ubiquitous in VLSI processes where they are used to describe design and mask layouts. There, speed is of paramount importance due to the magnitude of the problems to be solved and hence very fast algorithms are needed. We show that by tech...
متن کاملPathologies cardiac discrimination using the Fast Fourir Transform (FFT) The short time Fourier transforms (STFT) and the Wigner distribution (WD)
This paper is concerned with a synthesis study of the fast Fourier transform (FFT), the short time Fourier transform (STFT and the Wigner distribution (WD) in analysing the phonocardiogram signal (PCG) or heart cardiac sounds. The FFT (Fast Fourier Transform) can provide a basic understanding of the frequency contents of the heart sounds. The STFT is obtained by calculating the Fourier tran...
متن کاملComprehensive Performance Comparison of Fourier, Walsh, Haar, Sine and Cosine Transforms for Video Retrieval with Partial Coefficients of Transformed Video
The desire of better and faster retrieval techniques has always fuelled to the research in content based video retrieval (CBVR). The extended comparison of innovative content based video retrieval (CBVR) techniques based on feature vectors as partial coefficients of transformed video frames using various orthogonal transforms is presented in the paper. Here the popular transforms are considered...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1010.5562 شماره
صفحات -
تاریخ انتشار 2010